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Abstract:  
Mission-critical video analytics in industries demand 
ultra-low, predictable latency. This paper presents a 
novel architecture for private 5G networks built on a 
MEC-native principle, where Multi-access Edge 
Computing is the intrinsic core. Our system enables 
joint, dynamic orchestration of compute and network 
slices for video streams from camera to analytic 
dashboard. Through comprehensive benchmarks of a 
real-world implementation, we quantify significant 
performance gains. The proposed MEC-native 
orchestration achieves a 30–40% reduction in end-to-

end latency and jitter compared to static edge 
deployments. This substantial improvement proves its 
essential role for reliable, real-time industrial 
applications, providing a deterministic framework for 
CCTV, quality inspection, and worker safety. 
Keywords: Private 5G Networks, Multi-access Edge 
Computing, Mission-Critical Applications, Video 
Analytics, Latency, Network Orchestration 

I. INTRODUCTION  

To instantly spot a safety hazard or identify a 
microscopic product defect in real-time, a delay of 
even a fraction of a second is unacceptable. Yet, 
today’s video analytics often rely on distant cloud 
servers, introducing frustrating lag. While moving 
processing to the local "edge" of the network 
helps, current setups are rigid—like bolting a 
powerful computer to the factory floor with a one-

size-fits-all internet connection. This static 
approach often wastes resources and still fails to 
guarantee the split-second, deterministic timing 
that life-and-business-critical applications 
demand, as they cannot adapt to changing network 
loads or computational priorities.This paper 
explores a smarter, integrated solution. We 
designed and implemented a system where ultra-

fast local computing power Multi-access Edge 
Computing and a dedicated, on-site private 5G 
network are architected from the ground up as a 
single, cooperative unit. We term this a "MEC-

native" private 5G network. In this intelligent 

setup, the moment a high-priority video feed from 
a camera or sensor requires analysis, a unified 
orchestrator can dynamically assign the optimal 
compute node within the MEC cluster and 
simultaneously carve out a guaranteed, high-speed 
data lane (a dedicated network slice) for that 
specific stream on the fly. This co-optimization 
ensures data takes the shortest, most efficient path 
with prioritized resources.We rigorously tested 
this idea with a complete, real-world video 
analytics pipeline, measuring performance from 
camera capture to on-screen alert. Benchmarks 
comparing our MEC-native orchestration against 
the conventional static method yielded a striking 
and consistent result: a 30–40% reduction in both 
end-to-end latency and jitter. This is not a minor 
incremental improvement but a fundamental leap 
in capability. It demonstrates that by deeply 
integrating compute and network control, we can 
transform private 5G from a passive pipe into an 
intelligent, adaptive substrate. This makes 
reliable, real-time video intelligence for industrial 
safety, security surveillance, and automated 
precision inspection not just a theoretical promise, 
but a deployable, practical reality. 

II. LITERATURE SURVEY 

The evolution of mission-critical video analytics 
began with cloud-centric architectures, yet studies 
by Shi et al. (2016) and Satyanarayanan (2017) 
revealed prohibitive latency and bandwidth 
constraints for real-time streams, catalyzing a shift 
toward Multi-access Edge Computing (MEC). 
Frameworks such as those by Taleb et al. (2017) 
demonstrated latency reductions by processing 
data near the source. Concurrently, the advent of 
private 5G networks with Ultra-Reliable Low-

Latency Communication (URLLC) capabilities 
outlined by Popovski et al. (2018)—promised 
deterministic connectivity for industrial IoT. 
However, a significant gap persists: most existing 
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work, including surveys by Mach & Becvar 
(2017), treats compute and network orchestration 
as separate domains, resulting in siloed 
management and sub-optimal performance under 
dynamic loads. Emerging research on integrated 
"MEC-in-Native" designs, as conceptualized in 
ETSI standards, suggests co-designing the edge 
platform with the 5G core is essential. Yet, 
empirical benchmarks quantifying the end-to-end 
latency gains of such a deeply integrated, MEC-

native private 5G architecture for a full video 
analytics pipeline remain scarce. Our work 
directly addresses this gap by implementing this 
integrated paradigm and measuring its 
performance against static baselines to provide 
conclusive, quantified validation of its critical 
advantage. 
III. PROPOSED WORK  

This paper proposes the design, implementation, 

and empirical validation of a novel MEC-native 

architecture for private 5G networks, specifically 

engineered to meet the stringent latency and 

reliability demands of mission-critical video 

analytics. The core objective is to eliminate the 

performance limitations of current static edge 

deployments by co-designing the Multi-access 

Edge Computing platform and the private 5G 

network as a single, intelligently orchestrated 

system.The proposed work unfolds across three 

integrated phases. First, we will architect and 

implement the foundational system. This involves 

deeply integrating a containerized 5G User Plane 

Function within a Kubernetes-based MEC host, 

ensuring local traffic breakout at the edge. The 

centerpiece is a unified Joint Orchestrator, which 

will have a consolidated view of both compute 

resources (CPU/GPU load, memory) and network 

states (UE location, radio conditions, slice 

availability). Second, we will develop and deploy 

orchestration policies and algorithms. These 

intelligent rules will enable the system to 

dynamically perform two key actions in tandem: 

placing and scaling the appropriate video analytics 

containers (e.g., YOLO-based object detectors) on 

the optimal MEC node, and simultaneously 

provisioning a dedicated, high-priority network 

slice for the specific camera feed associated with 

that workload. Finally, we will construct a 

physical testbed using commercial hardware, 

software-defined radios, and an open-source 5G 

core to conduct rigorous, reproducible 

benchmarking. The definitive evaluation will 

measure and compare the end-to-end latency and 

jitter of a complete video analytics pipeline under 

our proposed MEC-native orchestration against a 

conventional static deployment baseline, thereby 

quantifying the anticipated 30-40% performance 

improvement. 

 
 

Fig 1: Proposed Architecture Diagram 

 

IV. METHODOLOGY 

Our methodology is structured around a 

comparative, empirical approach to validate the 

proposed architecture. 

1. Testbed Construction: 

We first construct a physical testbed comprising 

the core components: a private 5G network using 

software-defined radio (USRP) and an open-

source 5G Core (Open5GS), a Kubernetes-based 

MEC cluster, and IP cameras as data sources. A 

central management server hosts the Joint 

Orchestrator. The baseline "Static" setup uses 

fixed workload placement and a default network 

slice. 

2. System Implementation:  

We implement two orchestration modes. The 

Static Mode manually deploys the video analytics 

application on a predetermined MEC node with a 

best-effort network path. The MEC-Native Mode 

integrates our Joint Orchestrator, which uses a 

simple heuristic algorithm. This algorithm 

monitors UE location and application demand, 
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dynamically placing the analytics container on the 

MEC node closest to the serving gNodeB and 

simultaneously provisioning a dedicated, high-

priority network slice for its video stream. 

3. Benchmarking & Data Collection: 

The primary experiment involves streaming live 

video for object detection. We measure End-to-

End Latency(camera capture to dashboard display) 

and Jitter using hardware timestamps at each 

pipeline stage (transmission, MEC processing, 

result delivery). Each experiment is repeated 

under identical, controlled network load 

conditions for both orchestration modes to ensure 

a fair comparison. 

4. Analysis: 

We statistically analyze the collected latency and 

jitter data. The performance improvement is 

quantified by comparing the mean, 95th percentile 

(tail latency), and standard deviation (jitter) of the 

distributions from the MEC-Native mode against 

the Static baseline, aiming to demonstrate the 

targeted 30-40% reduction. 

VI. RESULTS AND DISCUSSION 

The empirical benchmarks demonstrate a 
significant performance advantage for the 
proposed MEC-native architecture. As shown in 
Table 1, the key latency and jitter metrics for the 
video analytics pipeline are substantially lower 
under dynamic orchestration. 

Metric 
Static 

Orchestration 

MEC-Native 
Orchestration 

End-to-End 
Latency 

152 ms 98 ms 

Latency 
Jitter (σ) 28 ms 17 ms 

95th 
Percentile 
Latency 

210 ms 132 ms 

Table 1: Performance Comparison (Mean Values) 

The data in Table 1 quantifies the substantial 
performance gains achieved by the MEC-native 
architecture. The system reduced mean end-to-end 
latency by 35.5%, from 152 ms to 98 ms, directly 
enhancing real-time responsiveness. More 

significantly, latency jitter was cut by 39.3%, with 
the standard deviation dropping from 28 ms to 17 
ms, which critically improves predictability for 
deterministic operations. The 37.1% improvement 
in the 95th percentile latency—from 210 ms down 
to 132 ms—demonstrates that the system 
effectively mitigates the worst-case delays that 
plague static deployments. These collective 
improvements confirm that the dynamic, joint 
orchestration of compute and network resources 
successfully transforms the private 5G edge into a 
reliable, high-performance platform for mission-

critical video analytics. 

 

Figure 2: End-to-End Latency Over Time 

This plot compares the instantaneous latency of 
the video analytics pipeline over a 60-second 
period for the MEC-native system against the 
static baseline. The MEC-native trace shows 
consistently low and stable latency, while the 
static baseline exhibits high variability with 
frequent, disruptive spikes. This visualization 
underscores the proposed system's superior ability 
to provide deterministic, low-jitter performance 
essential for real-time applications. 

 

Fig 3: End-to-End Latency Distribution 

This histogram compares the frequency of 
observed latency values for the static deployment 
and the proposed MEC-native system across 
thousands of video frames. The MEC-native 
distribution is significantly tighter and shifted to 
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the left, indicating both lower average latency and 
greatly reduced variability. Crucially, nearly all 
MEC-native latencies fall below the critical 200 
ms threshold, a key benchmark for real-time 
interactivity, which the static deployment 
frequently exceeds. 

CONCLUSION 

This research successfully demonstrates that a 
MEC-native architecture for private 5G networks 
is a transformative solution for mission-critical 
video analytics. By fundamentally co-designing 
the Multi-access Edge Computing platform with 
the 5G core and introducing a unified Joint 
Orchestrator, we enable the dynamic, intelligent, 
and simultaneous management of compute 
workloads and network slices. Our empirical 
evaluation, based on a real-world testbed, 
provides conclusive evidence of this paradigm's 
superiority. Benchmark results show a consistent 
35-40% improvement across all key metrics—
mean end-to-end latency, jitter, and tail latency—
compared to conventional static edge 
deployments. This significant enhancement is not 
merely incremental; it represents the critical shift 
from a best-effort, unpredictable data pipe to a 
deterministic, optimized substrate capable of 
guaranteeing the split-second response times 
required for applications like industrial safety 
monitoring and automated quality inspection. The 
drastic reduction in jitter, in particular, proves the 
system's ability to deliver predictable performance 
under dynamic loads, a necessity for reliable 
automation. Therefore, this work validates that 
deep integration and joint orchestration are 
essential architectural principles.REFERENCES 
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